Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

Vitalijus Janickis, ${ }^{\text {a }}$ Marek Nečas, ${ }^{\text {b }}$ Josef Novosad, ${ }^{\text {b }}$ Michal Dušek ${ }^{\mathrm{c}}$ and Václav Petríček ${ }^{\text {c }}$

${ }^{\text {a }}$ Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-3028 Kaunas, Lithuania, ${ }^{\text {b }}$ Department of Inorganic Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic, and ${ }^{\mathrm{c}}$ Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Praha, Czech Republic

Correspondence e-mail: petricek@fzu.cz
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Commensurate and incommensurate structures of the hexabromotellurate(IV) bis\{dibromodiselenate(I)\} ion $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{n}\left(\mathrm{C}_{6} \mathbf{H}_{5}\right)_{4-\boldsymbol{n}} \mathrm{P}_{2}\left[\mathrm{TeBr}_{6}\left(\mathbf{S e}_{2} \mathrm{Br}_{2}\right)_{2}\right], n=\mathbf{0 , 1}\right.$

Structure analysis of $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{n}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4-n} \mathrm{P}_{2}\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]\right.$ is presented for $n=1$ and 0 [hereafter (I) and (II)]. Crystal (I) has been synthesized from elemental selenium, tellurium tetrabromide, ethyltriphenylphosphonium bromide and bromine. It has a standard monoclinic structure, space group $P 2_{1} / c$, and has been solved and refined to $R=0.0357$ for 4803 observed X-ray reflections by traditional techniques. Crystal (II), which has been prepared from elemental selenium, tellurium tetrabromide, tetraphenylphosphonium bromide and bromine, is an incommensurately one-dimensionally modulated structure with planar monoclinic superspace group. (II) has been refined to $R=0.0501$ for 4247 observed reflections. The modulation of the atoms that belong to the anion switches between two different basic positions, which are described by the crenel function algorithm. The modulation of the phenyl groups is much weaker and it could be refined within the rigid-body approximation. The TeBr_{6} octahedron is nearly regular in both structures. The two Br atoms of the octahedron have a bond to one of the Se atoms in an $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecule. For (I) both bonded Br atoms are trans positioned, while for (II) they can be either trans or cis positioned. The alternations of those arrangements are caused by modulation. The point group of the anion is -1 for crystal (I) and $2 / m$ for the average structure of crystal (II).

1. Introduction

In contrast to monoselenium dibromide SeBr_{2}, which has not been isolated but which makes a series of complexes with bromide (Krebs \& Ahlers, 1990), the binary compound of $\mathrm{Se}(\mathrm{I})$ with bromine $\mathrm{Se}_{2} \mathrm{Br}_{2}$ is stable as a pure liquid or solid. It exists in α - and β - $\mathrm{Se}_{2} \mathrm{Br}_{2}$ polymorphic modifications, which have been characterized by crystal structure analysis at 165 K (Kniep et al., 1983). In 1998 the first two complexes of $\mathrm{Se}_{2} \mathrm{Br}_{2}$ with the bromide ion were reported. The hexabromotetraselenate(I) $\left[\mathrm{Se}_{4} \mathrm{Br}_{6}\right]^{2-}$ ion consists of two $\mathrm{Br}-\mathrm{Se}-\mathrm{Se}-$ Br units bonded together by two bromide-ion bridges between the Se atoms in such a way that a chair-shaped six-membered ring is formed (Hauge et al., 1998). The dianion $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ forms a nearly regular SeBr_{6} octahedron with two trans positioned Br atoms that are weakly bonded to one of the Se atoms in an $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecule (Hauge et al., 1998). The dianion $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ was the first example of a bromoselenate ion that contains a selenium ion in the two oxidation states +1 and +4 .

The binary compound of Te (IV) with bromine, TeBr_{4}, is very stable and like other tellurium(IV) halides has been characterized structurally (Shoemaker \& Abrahams, 1965; Büscher, 1978). It forms a series of complexes with bromide: the anions $\left[\mathrm{TeBr}_{6}\right]^{2-}$ (Krebs \& Ahlers, 1990; Krebs et al., 1991;

Hauge \& Marøy, 1998), [$\left.\mathrm{TeBr}_{5}\right]^{-}$(Reich et al., 1996), $\left[\mathrm{Te}_{2} \mathrm{Br}_{10}\right]^{2-}$ (Krebs \& Büscher, 1980; Reich \& Krebs, 1994), $\left[\mathrm{Te}_{2} \mathrm{Br}_{9}\right]^{-}$(Reich et al., 1998) and $\left[\mathrm{Te}_{3} \mathrm{Br}_{13}\right]^{-}$(Krebs et al., 1991). All of these complexes are based on TeBr_{6} octahedra, and in the oligomeric species the octahedra are connected by common edges.

The dianion $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ was isolated as the phenyltrimethylammonium salt by reaction between elemental selenium and bromine in the presence of phenyltrimethylammonium bromide (Hauge et al., 1998). The amounts of reactants used were in accordance with the equation

$$
5 \mathrm{Se}+4 \mathrm{Br}_{2}+2 \mathrm{Br}^{-}=\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}
$$

In this work we used elemental selenium and TeBr_{4} in addition to bromine and ethyltriphenylphosphonium or tetraphenylphosphonium bromide in an attempt to produce a similar complex that contained selenium and tellurium. The amounts of reactants used were in accordance with the equation

$$
\mathrm{TeBr}_{4}+4 \mathrm{Se}+2 \mathrm{Br}_{2}+2 \mathrm{Br}^{-}=\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}
$$

if we take into consideration the fact that the product of the reaction of selenium with bromine in acetonitrile is mainly $\mathrm{Se}_{2} \mathrm{Br}_{2}$ when the $\mathrm{Se} / \mathrm{Br}_{2}$ ratio is 2.0 (Hauge et al., 1998):

$$
2 \mathrm{Se}+\mathrm{Br}_{2} \rightleftharpoons \mathrm{Se}_{2} \mathrm{Br}_{2}
$$

This work reports the first complex that contains one chalcogen atom (selenium) in oxidation state +1 and another (tellurium) in oxidation state +4 .

2. Experimental

2.1. Preparation

2.1.1. Crystal I. $2.4 \mathrm{mmol}(0.384 \mathrm{~g})$ of bromine were added to $4.8 \mathrm{mmol}(0.379 \mathrm{~g})$ of selenium, $1.2 \mathrm{mmol}(0.537 \mathrm{~g})$ of tellurium tetrabromide and $2.4 \mathrm{mmol}(0.891 \mathrm{~g})$ of ethyltriphenylphosphonium bromide in 4.0 g of acetonitrile. The mixture was stirred and heated to boiling point for 45 min . Then 10 g of acetonitrile were added to the mixture under stirring and heating to boiling point, and the resulting dark solution was set aside at room temperature. After a few hours $0.67 \mathrm{mmol}(0.80 \mathrm{~g})$ of orange crystals of ethyltriphenylphosphonium hexabromotellurate(IV) $\left[\mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}\left[\mathrm{TeBr}_{6}\right]$ were isolated. The filtrate was placed in a refrigerator (271 K) for 6 h , and $0.33 \mathrm{mmol}(0.60 \mathrm{~g})$ of red short prisms of $\left[\mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2}\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]\right.$ were isolated. Found: Se 17.06%, Te 6.89%. Calculated from the formula: Se 17.30%, Te 6.99%.

The filtrate was further cooled and then held at 251 K for several days. The remaining concentration of $\left[\mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}\left[\mathrm{TeBr}_{6}\right]$ was insufficient to coordinate residual $\mathrm{Se}_{2} \mathrm{Br}_{2}$, and therefore the resulting product was a mixture of orange crystals of $\left[\mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2}\left[\mathrm{TeBr}_{6}\right]\right.$ and red crystals of $\left[\mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]$, all of which were contaminated with the 'oil' of $\mathrm{Se}_{2} \mathrm{Br}_{2}$.
2.1.2. Crystal II. $2.4 \mathrm{mmol}(0.384 \mathrm{~g})$ of bromine were added to $4.8 \mathrm{mmol}(0.379 \mathrm{~g})$ of selenium, $1.2 \mathrm{mmol}(0.537 \mathrm{~g})$ of tellurium tetrabromide and $2.4 \mathrm{mmol}(1.006 \mathrm{~g})$ of tetraphenylphosphonium bromide in 4.0 g of acetonitrile. The mixture was stirred and heated to boiling point for 45 min . Then 6 g of acetonitrile were added under stirring and heating to boiling point. A small amount of selenium did not react and was filtered off. The dark solution was set aside at room temperature. After $8 \mathrm{~h}, 0.70 \mathrm{mmol}(1.35 \mathrm{~g})$ of red crystals of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}\right]_{2}\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]$ were isolated. Found: Te 6.45%. Calculated for the formula: Te 6.64%.

Selenium and tellurium were determined by atomic absorption spectrometry ('Perkin-Elmer' - 503). The density was measured by flotation; a mixture of trichloromethane and tribromomethane was used.

2.2. Crystal structure analysis

2.2.1. $\left[\mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}_{2}\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]\right.$ - regular structure. All measurements were carried out on a KUMA fourcircle diffractometer equipped with a CCD detector. The structure was solved by direct methods using SHELXS97 (Sheldrick, 1997) and further refined by Jana2000 (Petříček \& Dušek, 2000). The crystal data, conditions for data collection and refinement are summarized in Table 1. ${ }^{\mathbf{1}}$ The H atoms were found in the difference-Fourier map and refined isotropically. All non-H atoms were refined anisotropically.

Final atomic coordinates and equivalent isotropic displacement parameters are listed in the supplementary material. Bond lengths and angles of the $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ion are listed in Table 2.
2.2.2. $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}_{2}\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]\right.$ - modulated structure. Preliminary X-ray investigations using a KUMA CCD fourcircle diffractometer revealed a diffraction pattern typical for modulated crystals with clearly visible first-order satellites. All the reflections that were observed on the collected frames were indexed by four integers hklm with respect to the fourdimensional base (de Wolff, 1974) $\mathbf{h}=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}+m \mathbf{q}$, where $\mathbf{a}^{*}, \mathbf{b}^{*}$ and \mathbf{c}^{*} are the reciprocal axes of the basic structure and \mathbf{q} is the modulation vector (see Table 1). The crystal was found to be incommensurately modulated.

The integration of the main reflections and first-order satellites was performed with the KUMA software (KUMA Diffraction, 2000), which allows the integration of satellite reflections. The higher-order satellites were not detected. Data were corrected for Lorentz and polarization factors and for absorption. The Laue class ($2 / m$) and reflection conditions ($h k l m, h+k=2 n$) and ($h 0 l m, m=2 n$) lead to two possible superspace groups, $C 2 / m(\alpha, 0, \gamma) 0 s$ and $C m(\alpha, 0, \gamma) s$. The subsequent refinements were consistent with the existence of a center of symmetry.

The average structure was solved by SHELXS97 (Sheldrick, 1997) and refined using Jana2000 (Petříček \& Dušek, 2000). There are two clearly distinguishable positions of the

[^0]Table 1
Experimental details.

Computer programs used: SHELXS 97 (Sheldrick, 1990), JANA2000 (Petříček \& Dušek, 2000).
TeBr_{6} octahedron in the average structure (see Fig. 1), which can be coordinated by the $\mathrm{Br}_{2} \mathrm{Se}_{2}$ molecule at four different ligand positions A, B, C and D. These four positions are generated by the local site symmetry of the anion. The

Table 2
Bond lengths (in \AA), bond angles and torsion angles (in ${ }^{\circ}$) in (I).

$\mathrm{Te}-\mathrm{Br} 1$	$2.6985(5)$	$\mathrm{Se} 1-\mathrm{Br} 4$	$2.3873(8)$
$\mathrm{Te}-\mathrm{Br} 2$	$2.7388(5)$	$\mathrm{Se} 1-\mathrm{Br} 2$	$3.2499(8)$
$\mathrm{Te}-\mathrm{Br} 3$	$2.6996(5)$	$\mathrm{Se} 2-\mathrm{Br} 5$	$2.3708(8)$
$\mathrm{Se} 1-\mathrm{Se} 2$	$2.2555(8)$	$\mathrm{Se} 1 \cdots \mathrm{Br} 1$	$3.4556(7)$
		$\mathrm{Se} 2 \cdots \mathrm{Br} 2^{\mathrm{ii}}$	$3.3936(8)$
		$\mathrm{Se} 2 \cdots \mathrm{Br}^{\mathrm{ii}}$	$3.5610(7)$
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 2$	$89.346(15)$	$\mathrm{Se} 2-\mathrm{Se} 1-\mathrm{Br} 4$	$102.03(2)$
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 2^{\mathrm{i}}$	$90.654(15)$	$\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	$102.06(2)$
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 3$	$89.063(16)$	$\mathrm{Se} 2-\mathrm{Se} 1-\mathrm{Br} 2$	$97.09(2)$
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 3^{\mathrm{i}}$	$90.937(16)$	$\mathrm{Br} 4-\mathrm{Se} 1-\mathrm{Br} 2$	$157.77(3)$
$\mathrm{Br} 2-\mathrm{Te}-\mathrm{Br} 3$	$89.516(15)$	$\mathrm{Te}-\mathrm{Br} 2-\mathrm{Se} 1$	$102.712(19)$
$\mathrm{Br} 2-\mathrm{Te}-\mathrm{Br} 3^{\mathrm{i}}$	$90.484(15)$	$\mathrm{Se} 2-\mathrm{Se} 1 \cdots \mathrm{Br} 1$	$166.46(3)$
		$\mathrm{Se} 1-\mathrm{Se} 2 \cdots \mathrm{Br} 2^{\mathrm{ii}}$	$100.89(2)$
$\mathrm{Br} 4-\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	$80.76(3)$	$\mathrm{Br} 2-\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	$-87.84(3)$

Symmetry codes: (i) $2-x, 1-y,-z$; (ii) $1-x, 1-y,-z$.

Figure 1
View of the $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ion in the average structure of (II). The four possible ligand positions for coordination by $\mathrm{Se}_{2} \mathrm{Br}_{2}$ are indicated by A, B, C and D.
simultaneous presence of A and B or C and D is impossible because of the short distances. This led us to hypothesize that the modulation has basically an occupational character and switches between two possible trans arrangements of the ligands ($A-C$ and $B-D$) and/or between two possible cis arrangements $(A-D$ and $B-C)$.

The average model was used as a starting point for fourdimensional refinement. First we used the first harmonic for both the positional modulation of Te, Br and Se atoms and the occupational modulation of Br and Se atoms. The refined parameters confirmed that the occupational modulation function has a step-like character, which is obvious from the density sections through the Fourier density map (for atom Se2 see Fig. 2). This type of modulation can be described by the crenel functions that were introduced by Petríček et al. (1995). The refinement in which the crenel function was

Table 3
List of the orthogonalized functions used in the refinement of (II).

Atom	i	$B_{i 0}$	$A_{i 1}$	$B_{i 1}$
Br1	0	1.0		
	1	0.287	1.471	
	2	2.049	0.799	3.123
Br2	0	1.0		
	1	1.648	2.726	
	2	-1.250	-1.512	1.686
Br3	0	1.0		
	1	1.478	2.524	
	2	-1.447	-1.695	1.821
Se1	0	1.0		
	1	1.123	2.126	
	2	-1.737	-1.835	2.161
Br4	0	1.0		
	1	1.184	2.191	
	2	-1.696	-1.833	2.097
Se2	0	1.0		
	1	-0.210	1.445	
	2	-2.058	0.598	3.180
Br5	0	1.0		
	1	0.047	1.416	
	2	-2.068	-0.136	3.246

applied for all occupationally modulated atoms showed that the Δ parameters were equal to within the standard deviations and that neighboring or symmetry-related $\mathrm{Br}_{2} \mathrm{Se}_{2}$ and TeBr_{6} molecules are simultaneously either occupied or non-occupied. This allows us to state the following restrictions to occupationally modulated atoms:

$$
x_{4}^{0}(A)=x_{4}^{0}(R)+\mathbf{q} \cdot[\mathbf{r}(A)-\mathbf{r}(R)]
$$

where A stands for any atom of $\mathrm{Br}_{2} \mathrm{Se}_{2}$ or TeBr_{6}, R is the reference point, x_{4}^{0} is the center of the crenel function and \mathbf{r} is the three-dimensional coordinates of the atom. It can also be shown that the occupancies of $\mathrm{Br}_{2} \mathrm{Se}_{2}$ and TeBr_{6} are related by a similar equation so that the same reference point can be used for all atoms of both molecules. Using the Se 2 atom as a

Figure 2
The $x_{2}-x_{4}$ section through the Fourier map in the vicinity of the $\operatorname{Se}(2)$ atom in (II). The two peaks correspond to the basic and symmetry-related position $\left(x_{1}, 1-x_{2}, x_{3}, 1 / 2+x_{4}\right)$ of the $\operatorname{Se}(2)$ atom.
common reference point we could describe occupational modulation of both groups with only one parameter $x_{4}^{0}(\mathrm{Se} 2)$.

The value of $x_{4}^{0}(\mathrm{Se} 2)$ determines whether local disorder and unrealistic distances (as mentioned above for the basic structure) are present or avoided. The following condition guarantees the proper geometry:

$$
x_{4}^{0}(\mathrm{Se} 2)=\mathbf{q} \cdot\left[\mathbf{r}\left(\mathrm{Se} 2^{\prime}\right)-\mathbf{r}(\mathrm{Se} 2)\right] / 2
$$

where $\mathrm{Se}^{\prime}{ }^{\prime}$ stands for the atom related by the symmetry operator $1-x, y,-z$. The original value of $x_{4}^{0}(\mathrm{Se} 2)$, which is refined without this restriction, was consistent with the restricted value within the standard deviation. Therefore we included the restriction in the final refinement and the occupational parameters were fixed from geometrical and structural considerations. The number of parameters was greatly reduced without any significant impact on R values.

The occupational modulation leads to a complete separation of the cis and trans arrangements. The interval of $t \in(0,1)$ is divided into four disjunctive intervals:

$$
\begin{aligned}
& (-1 / 4+\alpha / 2,3 / 4-\alpha / 2), \text { cis } A-C \\
& (3 / 4-\alpha / 2,1 / 4+\alpha / 2), \text { trans } A-D \\
& (1 / 4+\alpha / 2,5 / 4-\alpha / 2), \text { cis } B-D \\
& (5 / 4-\alpha / 2,3 / 4+\alpha / 2), \text { trans } B-C
\end{aligned}
$$

where α stands for the first component of the modulation vector, 0.7363 (5). The sum of the lengths where the trans arrangement exists is equal to $2 \alpha-1$, and this arrangement yields a slightly lower occupation (47.26\%) than the cis arrangement.

The use of the orthogonalization method as described by Petříček et al. (1995) was necessary to suppress the strong correlations between positional parameters that were induced by the crenel-like modulation function for the occupational parameters. In this method the regular harmonic functions used in ordinary modulated structures are replaced by orthogonalized sets of functions

$$
\begin{aligned}
\operatorname{Ortho}_{i}\left(x_{4}\right)= & B_{i 0}+\sum_{n=1}^{\lfloor(i+1) / 2\rfloor} A_{i n} \sin \left(2 \pi n x_{4}\right) \\
& +\sum_{n=1}^{\lfloor i / 2\rfloor} B_{i n} \cos \left(2 \pi n x_{4}\right)
\end{aligned}
$$

where $\lfloor x\rfloor$ means an integer part of x. The coefficients are summarized in Table 3. The final refinement converged smoothly to $R=0.05$. The refined atomic positional parameters and their modulations are given in Table 4.

The tetraphenylphosphonium cation is affected by the modulation as well. The central P atom was refined individually. The two independent phenyl groups were refined in a rigid-body approximation as two positions of the same molecule. Then the modulation function for each atom of the molecule is expressed as a combination of the translational and rotational modulation (Petříček et al., 1985) of the molecule:

Table 4
Final values of coordinates and Fourier amplitudes of the displacive modulation functions of (II).

The waves are sorted by the term (s for sine, c for cosine, o for orthogonalized functions) and harmonic order.

Atom	Δ	x_{4}^{0}	Wave	x	y	z	$U_{\text {eq }} / U_{\text {iso }}\left(\AA^{2}\right)$
Te						0.0	0.0121 (3)
			s,1	0.0	0.00117 (4)	0.0	
			c, 1	0.0	0.0	0.0	
Br1	1/2	0.54955		0.04905 (10)	0.01155 (9)	$-0.23200(13)$	0.0198 (5)
			o,1	-0.0021 (2)	0.01045 (10)	0.0017(3)	
			o,2	0.0023 (3)	-0.00657 (16)	0.0043(4)	
Br2	1/2	0.80077		0.1730 (2)	0.07696 (13)	0.0938(4)	0.0207 (5)
			o,1	-0.0003 (7)	0.002 2(3)	-0.0120 (6)	
			o,2	0.0037 (4)	0.0004 (2)	-0.0074 (4)	
Br3	1/2	0.81410		0.1738 (3)	-0.0770 1(13)	0.0556 (2)	0.0200 (7)
			o,1	0.0036 (4)	0.0026 (2)	0.0244 (3)	
			o,2	-0.0030 (4)	-0.00059 (18)	0.0037 (6)	
Se1	1/2	0.84432		0.35249 (11)	0.05142 (5)	-0.08605 (15)	0.0243 (4)
			o,1	0.0000 (2)	-0.0010 9(10)	-0.0037 (3)	
			o,2	-0.0004 (3)	-0.00001 (14)	-0.0017 (4)	
Br4	1/2	0.83877		0.45624 (12)	0.01994 (5)	-0.24449 (17)	0.0337 (4)
			o,1	0.0010 (3)	-0.00073 (15)	-0.0025 (3)	
			o,2	-0.0013 (4)	-0.00147 (18)	-0.0034 (4)	
Se2	1/2	0.03662		0.50538 (12)	0.09093 (5)	0.05825 (15)	0.0264 (4)
			o,1	0.00057 (13)	-0.00124 (6)	-0.00409 (16)	
			o,2	0.0008 (4)	-0.00015 (16)	-0.0016 (5)	
Br5	1/2	0.99178		0.52143 (13)	0.17905 (5)	-0.02883 (17)	0.0361 (5)
			o,1	0.00172 (15)	-0.00077 (5)	-0.00089 (18)	
			o,2	0.0026 (4)	-0.00013 (19)	0.0039 (6)	
P				0.5	0.1907 8(10)	0.5	0.0174 (9)
			s,1	0.0	-0.01044 (14)	0.0	
			c, 1	-0.0177 (3)	0	0.0047 (4)	
Atoms of the phenyl group							
C1				0.374687	0.3747	0.1465	0.5149
C2				0.3195 (6)	0.3194 (6)	0.1502 (3)	0.6197 (7)
C3				0.2225 (7)	0.2223 (7)	0.1151 (3)	0.6245 (8)
C4				0.1835 (7)	0.1834 (7)	0.0775 (3)	0.5302 (9)
C5				0.2386 (7)	0.2385 (7)	0.0735 (3)	0.4293 (8)
C6				0.3348 (6)	0.3347 (7)	0.1079 (3)	0.4202 (7)
H2				0.353 (3)	0.349 (4)	0.1767 (14)	0.685 (3)
H3				0.193 (4)	0.191 (4)	0.1171 (18)	0.700 (3)
H4				0.120 (4)	0.118 (3)	0.0537 (14)	0.537 (5)
H5				0.213 (4)	0.208 (4)	0.0495 (16)	0.360 (3)
H6				0.377 (4)	0.375 (4)	0.1028 (18)	0.352 (3)

Table 5
Final values of molecular parameters for the phenyl molecule in (II).
The rotational parameters ψ, χ and φ are rotation angles around x, y and z, respectively. The waves are sorted by the term (s for sine, c for cosine) and harmonic order. The parameters $U_{i j}$ are explained in equation (1).

Position Wave	$\psi\left({ }^{\circ}\right) / U_{r x}$	$\chi\left({ }^{\circ}\right) / U_{r y}$	$\varphi\left({ }^{\circ}\right) / U_{r z}$	$x / U_{t x}$	$y / U_{t x}$	$z / U_{t x}$	
		0.0	0.0	0.0	$0.0011(5)$	$0.0005(2)$	$0.0006(6)$
	$\mathrm{s}, 1$	$0.0122(5)$	$-0.0096(2)$	$0.0075(7)$	$-0.0057(3)$	$0.00040(16)$	$-0.0003(3)$
$\mathrm{c}, 1$	$-0.0146(5)$	$-0.0042(2)$	$0.0143(6)$	$-0.0009(4)$	$0.00362(16)$	$-0.0013(4)$	
2		$-29.7(4)$	$-56.1(2)$	$151.5(4)$	$0.0801(5)$	$0.0877(2)$	$-0.1524(5)$
	$\mathrm{s}, 1$	$-0.0006(5)$	$0.0052(2)$	$-0.0157(6)$	$0.0079(3)$	$0.00007(15)$	$0.0033(3)$
$\mathrm{c}, 1$	$0.0111(5)$	$-0.0021(2)$	$-0.0200(6)$	$0.0056(3)$	$-0.00063(15)$	$0.0000(3)$	

where \mathbf{g} is the reference point of the molecule. The refined molecular parameters are given in Table 5. The distances and angles that are important for understanding the structure are summarized, together with bond-valence sums, in Table 6.

3. Results and discussion

3.1. Crystal chemistry

The anions $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ of compounds (I) and (II) are shown in Figs. 3 and 4 , respectively. They are composed of a nearly regular octahedral TeBr_{6} and two $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules. In compound (I) the $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules are linked to trans Br atoms of the octahedron, whereas in the modulated structure (II) the $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules are linked to trans or cis Br atoms of the octahedron. The alternation between two possible arrangements is the most pronounced feature of the modulation in (II). The anion in (I) is located, like $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ (Hauge et al., 1998), at the inversion center of the crystal structure. On the other hand, the anion in (II) is located at the local site with symmetry $2 / m$ only in the basic structure approximation (see Fig. 1). In the modulated structure the individual positions have generally no local symmetry (see Fig. 4).

In Table 7 the selected distances and angles of the $\mathrm{Se}_{2} \mathrm{Br}_{2}$ units in (I) and (II) are compared with analogous values found in the anion of the pure selenium compound and in the α - and $\beta-\mathrm{Se}_{2} \mathrm{Br}_{2}$ modifications. The differences between the internal distances and angles of the $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules in (I) and (II) are not significant. The $\mathrm{Se}_{2} \mathrm{Br}_{2}$ parts of the $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ion resemble those of the two solid $\mathrm{Se}_{2} \mathrm{Br}_{2}$ modifications published by Kniep et al. (1983) and the $\mathrm{Se}_{2} \mathrm{Br}_{2}$ units of the $\left[\mathrm{Se}_{4} \mathrm{Br}_{6}\right]^{2-}$ ion (Hauge et al., 1998) and $\mathrm{Se}_{2} \mathrm{Br}_{2}$ parts of the $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ion. However, β - $\mathrm{Se}_{2} \mathrm{Br}_{2}$ and $\left[\mathrm{Se}_{4} \mathrm{Br}_{6}\right]^{2-}$ both form six-membered rings, whereas the $\mathrm{Se}_{2} \mathrm{Br}_{2}$ parts of the $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ and $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ions have more open structures.

The $\mathrm{Se}_{2} \mathrm{Br}_{2}$ parts of (I) and (II) are acceptors in a donor-acceptor adduct. As

$$
\begin{align*}
\mathbf{u}^{\mu}\left(x_{4}\right)= & \sum_{n}\left\lfloor\mathbf{U}_{t s n}^{\mu} \sin \left(2 \pi n x_{4}\right)\right. \\
& \left.+\mathbf{U}_{t c n}^{\mu} \cos \left(2 \pi n x_{4}\right)\right\rfloor \\
& +\mathbf{g} \sum_{n}\left\lfloor\mathbf{U}_{r s n}^{\mu} \sin \left(2 \pi n x_{4}\right)\right. \\
& \left.+\mathbf{U}_{r c n}^{\mu} \cos \left(2 \pi n x_{4}\right)\right\rfloor, \tag{1}
\end{align*}
$$

expected, the bonds within the acceptor are weakly influenced by the contact. The bond lengths $\operatorname{Br} 2$ (donor) -Se 1 (acceptor) of (I) and (II) in the trans arrangement are 3.2498 (8) and 3.25 (2) \AA, respectively. These bonds are even longer than the 3.133 (2) \AA bond length found in the $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ion. The analogous distance 3.09 (2) \AA in the cis arrangement of

Table 6
Bond lengths ((\AA), bond angles and torsion angles (${ }^{\circ}$) in (II).

	Average	Minimal	Maximal
$\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}$ cis arrangement			
$\mathrm{Te}-\mathrm{Br} 1$	2.721 (11)	2.663 (10)	2.771 (14)
$\mathrm{Te}-\mathrm{Br} 2$	2.780 (17)	2.76 (2)	2.792 (15)
$\mathrm{Te}-\mathrm{Br} 3$	2.685 (13)	2.661 (14)	2.757 (13)
Se1-Se2	2.270 (14)	2.251 (18)	2.304 (13)
$\mathrm{Se} 1-\mathrm{Br} 4$	2.412 (18)	2.377 (18)	2.428 (18)
$\mathrm{Se} 1-\mathrm{Br} 2$	3.09 (2)	3.05 (2)	3.18 (2)
$\mathrm{Se} 2-\mathrm{Br} 5$	2.380 (19)	2.36 (2)	2.422 (14)
$\mathrm{Se} 2 \cdots \mathrm{Br} 4^{\text {ii }}$	3.359 (18)	3.36 (2)	3.361 (16)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 1^{\mathrm{i}}$	176.3 (3)	176.2 (3)	176.3 (3)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 2$	90.0 (5)	89.1 (6)	91.7 (5)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br}^{2}$	87.7 (5)	84.5 (6)	91.2 (5)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 3$	89.9 (4)	89.2 (4)	91.2 (4)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 3{ }^{\text {i }}$	92.4 (4)	88.3 (4)	94.6 (4)
$\mathrm{Br} 2-\mathrm{Te}-\mathrm{Br} 2^{\text {i }}$	90.9 (6)	90.1 (6)	91.3 (5)
$\mathrm{Br} 2-\mathrm{Te}-\mathrm{Br} 3$	88.3 (5)	86.1 (4)	90.5 (6)
$\mathrm{Br} 2-\mathrm{Te}-\mathrm{Br} 3{ }^{\text {i }}$	176.4 (5)	173.7 (5)	178.3 (5)
$\mathrm{Br} 3-\mathrm{Te}-\mathrm{Br} 3{ }^{\text {i }}$	92.5 (4)	92.3 (4)	93.0 (4)
Se2-Se1-Br4	102.2 (5)	102.0 (5)	102.4 (5)
$\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	103.8 (6)	101.6 (5)	104.7 (7)
$\mathrm{Se} 2-\mathrm{Se} 1-\mathrm{Br} 2$	89.3 (5)	88.4 (5)	89.7 (6)
$\mathrm{Br} 4-\mathrm{Se} 1-\mathrm{Br} 2$	168.2 (6)	167.3 (6)	168.9 (6)
$\mathrm{Te}-\mathrm{Br} 2-\mathrm{Se} 1$	99.1 (5)	97.1 (7)	100.1 (5)
Br4-Se1-Se2-Br5	82.9 (6)	80.3 (5)	84.0 (7)
$\mathrm{Br} 2-\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	-99.0 (6)	-101.4 (6)	-96.9 (5)
$\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}$ trans arrangement			
$\mathrm{Te}-\mathrm{Br} 1$	2.715 (13)	2.604 (10)	2.772 (15)
$\mathrm{Te}-\mathrm{Br} 2$	2.73 (2)	2.700 (15)	2.76 (2)
$\mathrm{Te}-\mathrm{Br} 3$	2.708 (15)	2.679 (16)	2.733 (13)
Br2-Se1	3.25 (2)	3.18 (2)	3.28 (2)
Se1-Se2	2.267 (16)	2.251 (18)	2.298 (13)
$\mathrm{Se} 1-\mathrm{Br} 4$	2.399 (18)	2.362 (18)	2.427 (18)
$\mathrm{Se} 2-\mathrm{Br} 5$	2.386 (19)	2.36 (2)	2.431 (14)
$\mathrm{Se} 2 \cdots \mathrm{Br} 4^{\mathrm{iv}}$	3.352 (19)	3.350 (16)	3.36 (2)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 1^{\mathrm{ii}}$	179.1 (3)	178.1 (2)	180 (2)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 2$	89.4 (5)	89.1 (6)	90.0 (6)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 2{ }^{\text {ii }}$	90.6 (5)	89.8 (6)	91.1 (6)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br} 3$	89.9 (5)	89.2 (5)	90.6 (5)
$\mathrm{Br} 1-\mathrm{Te}-\mathrm{Br}^{\text {ii }}$	90.1 (5)	87.5 (5)	92.7 (5)
$\mathrm{Br} 2-\mathrm{Te}-\mathrm{Br}_{2}{ }^{\text {ii }}$	178.6 (7)	177.4 (6)	180 (2)
$\mathrm{Br} 2-\mathrm{Te}-\mathrm{Br} 3$	90.1 (6)	88.0 (5)	90.8 (6)
$\mathrm{Br} 2-\mathrm{Te}-\mathrm{Br} 3{ }^{\text {ii }}$	89.9 (6)	87.1 (5)	94.3 (6)
$\mathrm{Br} 3-\mathrm{Te}-\mathrm{Br} 3^{\text {ii }}$	176.9 (5)	174.1 (5)	180 (3)
$\mathrm{Se} 2-\mathrm{Se} 1-\mathrm{Br} 4$	102.4 (6)	102.1 (6)	102.7 (5)
$\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	102.6 (6)	99.9 (5)	104.6 (7)
$\mathrm{Se} 2-\mathrm{Se} 1-\mathrm{Br} 2$	88.8 (6)	87.7 (6)	89.6 (7)
$\mathrm{Br} 4-\mathrm{Se} 1-\mathrm{Br} 2$	168.1 (6)	167.2 (6)	169.5 (5)
$\mathrm{Te}-\mathrm{Br} 2-\mathrm{Se} 1$	95.8 (6)	95.2 (5)	97.1 (7)
$\mathrm{Br} 4-\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	81.4 (6)	78.4 (5)	83.7 (7)
$\mathrm{Br} 2-\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	-102.6 (5)	-103.1 (5)	-101.4 (6)

Symmetry codes: (i) $-x, y,-z$; (ii) $-x,-y,-z$; (iii) $1-x, y, 1-z$; (iv) $1-x,-y,-z$.
(II) is significantly shorter. The Se 1 atoms of the present compounds act as central atoms in asymmetric, nearly linear, $3 c-4 e \mathrm{Br} 2-\mathrm{Se} 1-\mathrm{Br} 4$ systems. The weakness of the donoracceptor bond is responsible for the large differences in the nearly linear angle $\mathrm{Br} 4-\mathrm{Se} 1-\mathrm{Br} 2$, which is significantly affected by molecular arrangements in (I) and (II).

The $\mathrm{Se}-\mathrm{Se}$ bonds in the structure of $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ were slightly but significantly longer (Hauge et al., 1998) than those in the $\mathrm{Se}_{2} \mathrm{Br}_{2}$ modifications. This effect does not occur in (I) where the distances are in a good agreement with those in the α - and $\beta-\mathrm{Se}_{2} \mathrm{Br}_{2}$ modifications. The average $\mathrm{Se}-\mathrm{Se}$ distances in (II) are closer to those from the structure of

Figure 3
View of the $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ion, point group -1 , as found in the structure of (I).
$\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$, but unfortunately s.u. values from the modulated structure refinement are too high to draw an unambiguous conclusion.

The central TeBr_{6} octahedron in (I) has nearly ideal octahedral symmetry with the largest deviation from the average value being 0.937° for angles and $0.0403 \AA$ for bond lengths. The analogous values 1.28° and $0.0125 \AA$ have been found in the structure of the hexabromotellurate(IV) of the phenyltrimethylammonium cation (Hauge \& Marøy, 1998), where, like in (I), the Te atom is situated on the center of symmetry. The deviations from ideal symmetry are in accordance with those determined by Krebs \& Ahlers (1990). On the other hand, the TeBr_{6} octahedron in (II) is less regular because of the lack of local symmetry.

Variation of the bond lengths seems to be common for $3 c-4 e$ systems. Lengths vary in the ranges 2.671 (4)2.716 (4) \AA and 2.671 (4)-2.716 (4) \AA for $\left[\mathrm{H}_{9} \mathrm{O}_{4}\right]_{2}\left[\mathrm{TeBr}_{6}\right]$ (Krebs et al., 1991) and $\left[\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]_{2}\left[\mathrm{TeBr}_{6}\right]$ (Hauge \& Marøy, 1998), respectively, and these values are in agreement with the present investigation. The $\mathrm{Te}-\mathrm{Br}$ distances are different for Br atoms that are linked and not linked to $\mathrm{Se}_{2} \mathrm{Br}_{2}$; the former distances are slightly but significantly shorter (see Table 6). Thus the coordination of the two $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules has only a slight influence on the length of the complex $\mathrm{Te}-\mathrm{Br}$ bond.

Hauge et al. (1998) noted that in adducts with a bromine molecule as acceptor coordinated to Se as donor the acceptor has to be co-linear with the $\mathrm{Br}-\mathrm{Se}-\mathrm{Br}$ sequence to have a stronger influence on the length of the complex $\mathrm{Se}-\mathrm{Br}$ bond. In the crystal structure of $\left[\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]_{2}\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]$, the angle $\mathrm{Se}-\mathrm{Br} 2-\mathrm{Se} 1$ is 135.46 (6) ${ }^{\circ}$ and no strong influence on the complex bond was observed. In the structures (I), (II) cis and (II) trans the angles $\mathrm{Te}-\mathrm{Br}-\mathrm{Se} 1$ are even smaller: $102.712(19)^{\circ}, 99.1(5)^{\circ}$ and $95.8(6)^{\circ}$, respectively, which are in accordance with the values mentioned above.

The arrangement of intermolecular contacts between anions is quite different for (I) and (II) (see Fig. 5). In (I) the contacts of Se 1 to the adjacent octahedron, $\mathrm{Se} 1 \cdots \mathrm{Br} 1$ and $\mathrm{Se} 2 \cdots \mathrm{Br} 3$, are nearly parallel to the $\mathrm{Se} 1-\mathrm{Se} 2$ bond. The additional weak contacts $\mathrm{Se} 2 \cdots \mathrm{Br} 2$ have a similar orientation to the $\mathrm{Se} 1-\mathrm{Br} 2$ bonds with respect to $\mathrm{Se} 1-\mathrm{Se} 2$. In fact, Se 1 and Se 2 bond in a similar manner, and the only difference is that the relevant contacts of Se 1 are shorter. On the other

Table 7
Distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules and $\mathrm{Se}_{2} \mathrm{Br}_{2}$ units of $\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ and $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ions.

	$\alpha-\mathrm{Se}_{2} \mathrm{Br}_{2}$	$\beta-\mathrm{Se}_{2} \mathrm{Br}_{2}$	$\left[\mathrm{SeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$	$\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$	$\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$	$\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$
Se1-Se2	2.258 (2)	2.241 (1)	2.272 (2)	2.2555 (8)	2.270 (14)	2.267 (16)
$\mathrm{Se} 1-\mathrm{Br} 4$	2.357 (2)	2.366 (1)	2.347 (2)	2.3873 (8)	2.412 (18)	2.399 (18)
$\mathrm{Se} 2-\mathrm{Br} 5$		2.369 (1)	2.360 (2)	2.3708 (8)	2.380 (19)	2.386 (19)
$\mathrm{Se} 2-\mathrm{Se} 1-\mathrm{Br} 4$	107.23 (8)	103.86 (5)	102.40 (8)	102.03 (2)	102.2 (5)	102.4 (6)
$\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$		104.51 (5)	104.22 (7)	102.06 (2)	103.8 (6)	102.6 (6)
$\mathrm{Br} 4-\mathrm{Se} 1-\mathrm{Br} 2$		162.3 (6)	166.24 (7)	157.77 (3)	168.2 (6)	168.1 (6)
$\mathrm{Br} 4-\mathrm{Se} 1-\mathrm{Se} 2-\mathrm{Br} 5$	85.0 (1)	86.41 (8)	97.49 (8)	80.76 (3)	82.9 (6)	81.4 (6)
Reference	Kniep et al. (1983)	Kniep et al. (1983)	Hauge et al. (1998)	This work (I)	This work (II) cis	This work (II) trans

hand, in (II) there are no contacts between atoms of $\mathrm{Br}_{2} \mathrm{Se}_{2}$ and the octahedron except the $\mathrm{Se} 1-\mathrm{Br} 2$ bond. Thus the octahedron in (II) is much less fixed and this is obviously the main reason why the structure of this compound is modulated. Conversely, the weak contacts $\mathrm{Se} 2 \cdots \mathrm{Br} 4$ (see Table 6) are virtually unaffected by the modulation.

3.2. Origin of modulations in compound (II)

A comparison of the anions in (I) and (II) suggests two basic questions: firstly, why is the packing of the two neighboring $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules different (Fig. 5); secondly, why do the cis and trans arrangements alternate in (II) (Fig. 4)?

In (II), atoms $\mathrm{Br}(5)$ point out of the $\mathrm{Se}_{2} \mathrm{Br}_{2}-\mathrm{TeBr}_{6}$ chain and fit into the holes in the surrounding cation (see Fig. 6). The frequency of these holes is determined by the $\mathrm{P}-\mathrm{P}$ distance, which is on average $11.27 \AA$ along the chain. In this way the space requirements of the cation determine the distance between two $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules. The same conclusions can be used in (I) where the atoms pointing out of the chain are $\operatorname{Br}(4)$ and $\operatorname{Br}(5)$ (Fig. $5 b$) and the $\mathrm{P}-\mathrm{P}$ distance is $10.36 \AA$. The TeBr_{6} octahedron is positioned between $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules, which means that the $\mathrm{Te}-\mathrm{Te}$ distance is also constrained: it is 10.36 and $11.26 \AA$ in (I) and (II), respectively. The difference in packing of $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules can be understood from the way in which the given spacing is achieved in the chain. The arrangement in the ring (see Fig. 5a) is closer and yields

Figure 4
Packing of the $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ ion, point group 2/m, in the structure of (II).
shorter $\mathrm{Te}-\mathrm{Te}$ distance in (I). The rather looser arrangement shown in Fig. 5(b) enables the $\mathrm{Te}-\mathrm{Te}$ distance in (II) to be longer by almost $1 \AA$.

(a)

(b)

Figure 5
Intermolecular contacts of anions in (a) $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}\left[\mathrm{TeBr}_{6}-\right.$ $\left.\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]$, (b) $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}\right]_{2}\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]$.

The relative positions of $\mathrm{Se}_{2} \mathrm{Br}_{2}$ and TeBr_{6} in (I) are given by the $\mathrm{Se}-\mathrm{Br}$ intermolecular bonds (see Fig. 5b). This geometry enables unambiguous connection of these units along the a axis. On the other hand, in (II), the chain can be formed in several ways (see Fig. 4): by $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules in the trans- arrangement, in the cis- arrangement or in a combination of these arrangements. This ambiguity allows very weak interactions to play a role.

Table 8 shows that the $\mathrm{Br}-\mathrm{H}$ distances are often significantly below the sum of the van der Waals radii ($3.05 \AA$). In Fig. 6 only the $\mathrm{Br}-\mathrm{H}$ distances shorter than $2.9 \AA$ are plotted. Fig. 6 illustrates the fact that most of the interactions occur in the cis arrangement and only on one side of the chain. Although simple geometric considerations cannot quantify the strength of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions, this arrangement probably introduces an instability that can be understood to be the source of the modulation. The creation of weak interactions at the opposite side implies that the existing weak interactions are destroyed and the TeBr_{6} octahedron is turned upside down. The trans configuration without weak interactions represents an equilibrium stage.

Based on the above considerations the modulations in (II) are governed by the space requirements of the cation, which influence the packing of the $\mathrm{Se}_{2} \mathrm{Br}_{2}$ molecules. This packing leads to ambiguous arrangements in the $\mathrm{Se}_{2} \mathrm{Br}_{2}-\mathrm{TeBr}_{6}$ chain, which is therefore affected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions. The modulation of the surrounding cation can be understood to be a response to the discontinuous modulations in the chain.

Figure 6
Packing of $\left[\mathrm{TeBr}_{6}\left(\mathrm{Se}_{2} \mathrm{Br}_{2}\right)_{2}\right]^{2-}$ and the surrounding $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}^{+}$in the structure of (II). The parts of the molecules that would obscure the anion in the view along \mathbf{c} were omitted.

Table 8
Distances (\AA) between bromine and hydrogen in (II).

	Average	Minimal	Maximal
$\mathrm{Br} 1-\mathrm{H} 4 a^{\mathrm{i}}$	$2.94(5)$	$2.79(5)$	$3.21(5)$
$\mathrm{Br} 2-\mathrm{H} 3 b^{\mathrm{ii}}$	$3.08(5)$	$2.89(5)$	$3.24(5)$
$\mathrm{Br} 2-\mathrm{H} 4 b^{\mathrm{iii}}$	$2.89(5)$	$2.86(5)$	$2.92(5)$
$\mathrm{Br} 3-\mathrm{H} 5 a^{\text {iv }}$	$3.06(4)$	$2.91(4)$	$3.13(4)$
$\mathrm{Br} 3-\mathrm{H} 6 a^{\mathrm{iv}}$	$3.52(4)$	$2.97(4)$	$3.78(4)$
$\mathrm{Br} 3-\mathrm{H} 4 b^{\mathrm{v}}$	$2.99(5)$	$2.93(5)$	$3.15(5)$
$\mathrm{Br} 4-\mathrm{H} 6 a^{\text {vi }}$	$3.28(5)$	$2.87(5)$	$3.49(5)$

Symmetry codes: (i) $-x, y,-1-z$; (ii) $-\frac{1}{2}-x, \frac{1}{2}+y$, -z ; (iii) $\frac{1}{2}-x, \frac{1}{2}-\mathrm{y},-z$; (iv) $-x, y$, $-z ;(\mathrm{v})-x,-1+y,-z$; (vi) $\frac{3}{2}-x, \frac{1}{2}+y,-z$.

This work was supported by The Ministry of Education of the Czech Republic (MSM 143100011) and by the Grant Agency of the Czech Republic (grants 202/00/0645 and 203/02/ 0436).

References

Büscher, K. (1978). PhD thesis, University of Münster, Germany. Hauge, S., Janickis, V. \& Marøy, K. (1998). Acta Chem. Scand. 52, 1104-1109.

Hauge, S. \& Marøy, K. (1998). Acta Chem. Scand. 52, 445-449.
Kniep, R., Korte, L. \& Mootz, D. (1983). Z. Naturforsch B., 38, 1-6.
Krebs, B. \& Ahlers, F.-P. (1990). Adv. Inorg. Chem. 35, 235-317.
Krebs, B., Bonmann, S. \& Erpenstein, K. (1991). Z. Naturforsch. B, 46, 919-930.
Krebs, B. \& Büscher, K. (1980). Z. Anorg. Allg. Chem. 468, 56-64.
KUMA Diffraction (2000). KM4CCD System Software. Version 1.162. Kuma Diffraction Instruments and Université de Lausanne, Switzerland.
Petříček, V., Coppens, P. \& Becker, P. (1985). Acta Cryst. A41, 478483.

Petříček, V. \& Dušek, M. (2000). JANA2000. Programs for Modulated and Composite Crystals. Institute of Physics, Praha, Czech Republic.
Petríiček, V., van der Lee, A. \& Evain, M. (1995). Acta Cryst. A51, 529-535.
Reich, O., Hasche, S., Beckmann, I. \& Krebs, B. (1996). Z. Anorg. Allg. Chem. 622, 1011-1018.
Reich, O., Hasche, S., Bonmann, S. \& Krebs, B. (1998). Z. Anorg. Allg. Chem. 624, 411-418.
Reich, O. \& Krebs, B. (1994). Z. Krystallogr. Suppl. 8, 360.
Sheldrick, G. M. (1997). SHELXS97. Program for Solution of Crystal Structures. University of Göttingen, Germany.
Shoemaker, C. D. \& Abrahams, S. C. (1965). Acta Cryst. 18, 296. Wolff, P. M. de (1974). Acta Cryst. A30, 777-785.

[^0]: ${ }^{\mathbf{1}}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: SN0022). Services for accessing these data are described at the back of the journal.

